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SUMMARY 

A one-dimensional transport test applied to some conventional advective Eulerian schemes shows that 
linear stability analyses do not guarantee the actual performances of these schemes. When adopting the 
Lagrangian approach, the main problem raised in the numerical treatment of advective terms is a 
problem of interpolation or restitution of the transported function shape from discrete data. Several 
interpolation methods are tested. Some of them give excellent results and these methods are then 
extended to multi-dimensional cases. 
The Lagrangian formulation of the advection term permits an easy solution to the Navier-Stokes 

equations in primitive variables V, p, by a finite difference scheme, explicit in advection and implicit in 
diffusion. 

As an illustration steady state laminar flow behind a sudden enlargement is analysed using an upwind 
differencing scheme and a Lagrangian scheme. The importance of the choice of the advective scheme in 
computer programs for industrial application is clearly apparent in this example. 

KEY WORDS Lagrangian Advective Schemes Numerical Diffusion Navier-Stokes 

1. INTRODUCTION 

In  fluid mechanics, it is well known that the treatment of advection hyperbolic terms is 
particularly difficult. 

A very simple differential equation such as: 

where F(x, t) is an unknown scalar function and u(x, t) a given scalar function cannot, for the 
general case, be satisfactorily solved at the present time. This is amply demonstrated by the 
abundance of available literature. We will define two approaches to the problem: 

-the Eulerian approach, which is a conventional method to solve this type of equations 
with partial derivatives. Assuming that the function are indefinitely derivable in x and t, we 
try to find a formulation utilizing finite differences and fitting with a Taylor's series up to 
the highest possible order, 

-the Lagrangian approach, which is a physical rather than numerical method and suited 
to solving a transport problem. Knowing function F(x, t l )  at time t, for any x, we determine 
the values F(x, t2) at time t2 assuming that the function F remains constant over the 
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characteristic curves of plane (x, 1 )  which are the solutions of the differential equation: 

dx 
-= u(x, t )  
dt 

From the available bibliography, it appears that the method studied most often is the 
Eulerian approach. This is quite clear since time step limitations are not as stringent when 
utilizing implicit methods particularly when steady state conditions are sought. However, 
when limiting the study to industrial incompressible flows, an implicit advective scheme does 
not appear to be essential. In actual fact, grids are seldom refined in the direction normal to 
streamlines. Consequently, the use of an explicit scheme in advection may result in a quite 
acceptable computation time, provided it is implicit in diffusion. Therefore, there is no 
reason to discard the essentially explicit Lagrangian schemes. 

Moreover, if the performance of the scheme is ignored and quality of the results is 
considered in isolation, the literature remains rather prudent on the effect of the choice of 
the advective schemes on the solution of problems where advection is not the only physical 
mechanism involved. However, it obviously is a vital question when computing industrial 
incompressible flows where high accuracy is required. It then becomes interesting to go 
beyond pure advection tests and to compare the solutions of the Navier-Stokes equations 
related to a single steady flow as obtained through different advective schemes. 

2. REVIEW OF SOME EULERIAN METHODS 

The methods studied here are well established in the literature. They have been widely 
investigated with regard to consistency and linear stability. These will not, therefore, be 
discussed in detail. In the present text the different methods are compared via a one- 
dimensional test as defined below. 

2.1. Definition of the one-dimensionel test 

We revert to the problem presented in section 1 with the x-axis discretized with a constant 
step 6x and the time-axis discretized with a step 6r. Thus, x =x,+iSx, t=t,+nSt and 
equation (1) may be conveniently expressed in the reduced form: 

where c is the dimensionless Courant number 

A strict one-dimensional test allows an in-depth visualization of the essential properties of 
schemes investigated: 

-numerical diffusion 
-phase error 
-stability 

Taking the example proposed by Holly er el.:' the function F( i, 0) = 10e-"'4'1 is transported 
over 24 time steps (respectively 38, 48, 96) with c = 1 (respectively 0.75, 0.5, 0.25). 
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2.2. Leith's method 

It is well known that the 'natural' (centred) discretization of equation ( 2 )  

C 
ly + ' - F: + - (F+ 1 - fl- 1) = 0 2 (3) 

is unstable and that the upwind differencing scheme or FTUS1 (Forward Time Upwind 
Space of first order) 

in spite of having excellent stability and phase error properties (and, from a more practical 
viewpoint, cost and simplicity advantages) exhibits numerical diffusion, Figure 1. 

A compromise can therefore, be sought between formulations (3) and (4); this can be 
accompanied, for instance, by introducing a variable shift parameter, such as proposed by 
Hirt et al.:' 

F,?+' - c+ c(F - F-l) = 0 (4) 

The authors have endeavoured to minimize this shift in order to ensure the linear stability as 
defined by von Neumann. After rather tedious computations, it can be demonstrated that the 
scheme is stable if A>c and unstable if A < c  (taking the usual restrictions c s l ) .  The 
minimum shift therefore corresponds to A = c and we obtain k i th ' s  formulation: 

C CZ 

2 2 C+l--F+- (c+l - F-J -- (Iy+l + C-' -2ly)  = 0 

The scheme has interesting theoretical properties and is often shown in the literature under 
various forms, for instance by R ~ a c h e , ~  Dukowicz and Ramshaw: Godunov and MacCor- 
mack as quoted by Sod.' However, for the present test case the results were rather poor, 
Figure 2.  

T=O T.9600 S 

- 2 1  

Figure 1. Upwind differencing scheme (FTUS1) 
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T-0 1x9600 S 

Figure 2. k i t h  scheme 

2.3. Euler's implicit method (2) 

This is a centred scheme, stabilized by a method of Milne's type and rendered semi- 

(7) 
implicit: C 

F:+' - + - (F:: + - K?: - r-l) 0 
4 

The theoretical properties of this scheme are excellent: 
-truncation error of O(6x2, st*) 
-amplification factor of Neumann's analysis { V''+l/V''l identically equal to 1, thus 

The results from the test case, Figure 3, gave poorer results than those obtained with 
suggesting an unconditional stability scheme without numerical diffusion. 

T z O  T~9600 S 

A 

Figure 3. Euler's modified method 
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Leith's method. However, it must be noted that the solution is only slightly dependent on the 
Courant number. Owing to this interesting property, the scheme constitutes the starting 
point of the advective scheme of the PETULA program6*' which was finalized in 1968. 
Several improvements have been made to scheme (7) and in particular: 

--discretization of fourth-order spatial derivatives 
--correction of non-realistic values 
-reconstruction of the integral vaiue of the solution at time n + 1 such as: 

JP+' dx = JF dx 

This rather dated method yields resuits which are particularly useful for present purposes, 
Figure 4. It must, nevertheless, be stressed that due to the tests involved, this method is 
non-linear, expensive and difficult to program effectively. 

2.4. Other implicit methods 

Another way of stabilizing the centred scheme, (3), is to write it in a fully implicit form: 

c K+i"+' - f l+  - (c;; - ly;) = 0 
2 

According to R ~ a c h e , ~  the amplification factor of this scheme is: 

1 
El2 = 1 + c 2  sin2 0 

This exhibits unconditional stability but a numerical diffusion which increases with increasing 
c, such as shown in Figure 5. Consequently, transient flows could not be effectively studied 
using such a scheme. 

The FITJS1 can also be written in the implicit form: 

Fy+' - r+ ~(c" - r-+:) = 0 (9) 
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T - 0  T~96.00 S 

Figure 5. Implicit centred space scheme 
-2 I 

This certainly is the simplest, and most currently used, way of obtaining a steady state 
solution. According to our experience, scheme (9) has a more reliable behaviour than 
scheme (8). 

3. THE LAGRANGIAN APPROACH 

The Lagrangian approach related to the transport problem has been investigated, amongst 
other authors, by Roache3 (p. 75). Taking F as a given property of the fluid and if we write 
(1) in the form: D E  

Dt -=o (10) 

indicates that the value of function F specific to a fluid particle remains constant in time. We 
will generalize this concept in section 4 but at this stage, we revert to the conditions and 
notations of subsection 2.1 where function F is known at the points of a discretized space 
(x, t).  The values of c+’ are required for a constant velocity field u. Referring to Figure 6 ,  
the fluid particle which is located at point x, at time was located at point x* at time t,,. 
The overall transport equation(s) can therefore be split into two separate problems, 

(i) localization of x* or, in other words, determination of the characteristic curve crossing 
(q, t,,+,). Under the elementary conditions of the test case we have, 

or, in reduced co-ordinates, 
x *  = - u6t 

i * = i - c  

A x  *I 
Figure 6.  Trajectory of the particle 
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1 

and 

time t,,. 
(ii) interpolation of a value F* at point x*, according to neighbouring nodal values, at 

Equation (lo), therefore, becomes, 
F;+' -F* = 0 (11) 

in which the computation of F* is the critical feature of this method. 

~. 

3.1. Problems related to interpolation 

First, let us note that if c is an integer, we immediately have, 

Fr+' = F* = F!'!'= 
But in the general case, an interpolation function must be selected. In order to stress 
the importance of this choice, let us first consider linear interpolation which obviously 
leads to the explicit FTUS1 scheme (4). Consider the transport of the trapezium of 
Figure 7, as defined by F, = 0 for any i except when i = 4 , 5 , 6 ,  for which F, = 1 over three 

0 1 2  3 L 5 6 7 8 9 ?O 

0 1 2  3 L 5 6 3 8 9 10 

0 1 2  3 L 5 6 7 8 9 ?O 
Figure 7 .  Polynomial fitting of degree 1 (FTUs1) 
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- 

time steps, with c = 1/3. The first interpolation gives the values circled on Figure 7(b) from 
which the linear interpolation is, of course, not capable of regenerating a trapezium. I t  can 
only reproduce the polygon shown by the solid lines which are already markedly affected by 
numerical diffusion. 'This polygon is used as the basis of the second interpolation which will 
produce another polygon of a still more flattened type and so on. When three time steps 
have been completed, the trapezium is hardly recognizable. This example clearly shows the 
basic difficulty raised by the numerical treatment of advective terms: if the selected 
interpolation function could be adapted to the transported function, it would be capable of 
reconstituting the shape of this function from the discrete data issued from the first 
interpolation. For instance, the linear interpolation transports a straight line in an accurate 
way and without any restrictions depending on the Courant number. Similarly, if a perfect 
result were desired with our test case of subsection 2.1, we would simply select the 
interpolation function with three parameters, 

21 '  

0 2 2  L 5 6 1 8 3 1 0  

Figure 8 .  Polynomal fitting of degree 2 ( k i t h )  
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1 

However, in practice, a single interpolation function is used for all the computations and 
hence the transported function itself has to suit the interpolation function, with associated 
varying magnitude distortions. 

’. 

3.2. Polynomial interpolation 

A local interpolation method is therefore sought with associated restrictions on the 
Courant number (generally: c =s 1). Polynomial interpolations of second and third order 
appear to be of particular use. The second-order centred interpolation on points i - 1, i, i + 1, 
gives Leith’s formulation (6). The trapezium transported by this method is indicated in 
Figure 8. The third-order interpolation is not centred and applies to points i - 2 ,  i - 1, i, i + 1. 
The trapezium transport with this scheme is shown in Figure 9 and the results of the test 
case, subsection 2.1, are shown in Figure 10. It is apparent the third-order interpolation 
gives satisfactory results which are much better than those obtained by Leith’s method. In 

1 

2 )  

’ -  

Figure 9. Polynomial fitting of degree 3 (FKJS3) 



374 JP. HUFFENUS AND D. KHALETLKY 

Figure 10. Polynomial fitting of degree 3 (FTUS3) 

this paper, this scheme will now be referred to as FTUS3 (Forward Time Upwind Space of 
order 3). The trapezium transport tests have been conducted with polynomials of higher 
order with no significant improvement in the result. 

Scheme FTUS3 can be expressed as follows: 

C 2  C 2  

2 6 --'(c-i - 2 c  + c+ 1) -- (F-2- e+l+ 3 ( c -  K- 1)) = 0 (12) 

From von Neumann's linear analysis, this scheme is conditionally stable for c c 1 but this 
restriction may certainly be relaxed up to c c 2 .  With a constant mesh, the truncation error is 
O(6r,Sx3). When comparing Figures 1 and 10, it can be seen that scheme FTUS3 largely 
retains the good properties of FFUSl, such as stability and, more significantly, phase error, 
while the numerical diffusion is reduced considerably. Scheme FTUS3, similar to FTUSl is 
linear and may have an implicit formulation if only steady state problems are considered. 

3.3. Hermite interpolation 

Another conventional interpolation method consists of determining the derivatives (aF/ai)i 
and (aF/ai)i-l and then interpolate with a third-order polynomial and checking the values of 
function F and of its derivative at points i and i - 1. A brief review of two methods based on 
this procedure will be included. 

3.3.1. Derivative transport. The explicit scheme of very high accuracy is proposed by Holly 
et al.' A transport equation for the derived function is required. Under the elementary 
conditions of the test case, the derivative of equation (2) is merely, 
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T = O  T:9600 S 

Figure 11. Transport of the derivatives 

At time n, Fi, (aF/d& (aF/ai)i-l are assumed known and a Hermite polynomial is 
defined which allows E* and (W/ai)* to be determined. Consequently, the values of the 
function and of its derivative at time n + 1 are simply, 

and 

The results of the test case are excellent, Figure 11. According to the authors, they can be 
further improved by transporting, in the same way, the second-order derivative. There is, 
theortically, n o  reason why this method cannot be used in the solution of multi-dimensional 
Navier-Stokes equations. However, the momentum equations must be derived to the second 
order for the plane problems and to the third order for the three-dimensional problems. This 
therefore induces a significant computation complexity and associated prohibitive cost. 

3.3.2. Akima 's8 non-linear formula. In Akima's method, derivative (aF/ai); is computed 
in terms of five values from c-2 to c+2. Writing 

then 
m,=F;+,-Fr, j=i-2, i + l  

(aF/W:=(lm4-m31 m2+lm2- m,l m M m 4 -  m31+Im2-md 

(aFlai): = (mz i- m,)/2 

and the derivative (dF/ai),-, can also be computed in a similar manner, using the values r-3 
to c+,. The advective scheme requires six points r-.3 to e+z as a total. The results for the 
test case, Figure 12, are very good and this scheme appears to be basically interesting in spite 
of two obvious drawbacks-the non-linearities and even the possible discontinuities of 
derivatives due to the presence of absolute values and the large number of points required. 

If the denominator is zero 
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Figure 12. Akima interpolation method 

4. TWO-DIMENSIONAL TRANSPORT 

Two-dimensional transport for Lagrangian schemes only are considered. As in the previous 
section, a local interpolation method is required. 

4.1. Two-dimensional test case 

On a constant-mesh grid (xi, y,) define the square, 

and 
Fi,j=l if 4 a i C 6 ,  4 c j S 6  

= O  in the other cases. 

which is transported over 20 time steps with c, = 0.4 and cy = 0.3. The result of this 
transport is shown by a cross-section in the i and a cross-section in the j directions. 

4.2. 'Uncoupled' directions 

separately, in the y directions to obtain the values F: and F: and 
This consists of the successive application of a one-dimensional method in the x and, 

F* = F:+ - F;, 

It can be stated that most of the advective schemes, in particular the Eulerian schemes, are 
based on this principle. However, this procedure is not logical and may lead to aberrations in 
some limiting cases. We readily see that (13) features a linear extrapolation via the plane 
crossing points FZ, F: and F;? The necessity of determining the intermediate values F:, F: 
by means of sophisticated schemes, can then be questioned if the computation is completed 
by a rough extrapolation. From a strictly logical viewpoint, the only one-dimensional scheme 
adapted to formulation (13) is that which is itself based on linear interpolation, namely the 
FTUSl scheme, Figure 13. 
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0 1 2 3 L 5 6 

Figure 13. Two-dimensional test problem: l-FI’US1, 2-Petula 

The PETULA scheme (subsection 2.3) falls into the category of ‘uncoupled’ schemes. It 
gives acceptable results, Figure 13, owing to the corrective-compensating algorithm. How- 
ever, the results are rather bad when FTUS3 and Akima’s schemes, Figure 14, are used. 

We will explain, below, how to improve the accuracy of (13) while increasing, slightly, the 
cost and complexity of solution. 

4.3. Two-dimensional interpolation 

The logical expansion of the FTUS3 scheme to the two-dimensional case consists of using 
surface interpolated over points [i - 2, i + 11 x [i - 2, j + 11 if the velocity components are 
positive. This surface is described by the polynomial, . 

In fact, instead of carrying out directly the computation of the 16 coefficients a,,,”, it is more 
advisable to make five one-dimensional interpolations such as indicated in Figure 15. 

The Akima scheme can, in a similar manner be converted to the two-dimensional case but 
through seven one-dimensional interpolations as this scheme uses six points. 

The Holly et al.’ method leads to the simultaneous treatment of four equations of 
transport in F, aFlax, aFlay, a2F/ax ay and to the effective computation of the 16 coefficients 
of a polynomial of type (14). Results are still excellent but the cost, for the simple problem of 
transport in a constant velocity field, is 10 times higher than the other two schemes. Figure 
16 shows the results of the test case for these three schemes, all of which appear acceptable. 
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Figure 14. Two-dimensional test problem: l-lTUS3 uncoupled, 2-Akima uncoupled 

4.4. Simplified interpolation 

In this section, we propose an interpolation method which is intermediate, regarding cost 
and complexity, between the two previous methods. A positive velocity field ( u  > 0, u > 0) is 
considered and the interpolation takes place in the area [i - 1, i] x [ j  - 1, j ] .  Applying the 
uncoupled direction method regarding i and y, as in subsection 4.2, the following values are 

r 
I 

1 4 4  

I T I ! 1 

5 I 

Figure 15. Two-dimensional interpolation for m I S 3  
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Figure 16. Two-dimensional test problem: 1-Transport of the derivatives, 3-Akima, 3--FrmS3 

obtained 

To these four values are added the values of the function at  four corners of the interpofation 
area. These eight values are sufficient to determine an eight-coefficient polynomial which, 
considering the symmetry and maximum degree, is, 

F ( x ,  y) = a ,  + u2x + u,y + u,xy + a S x Z  + u,y2 + a , x 3 +  u8y3 

The results, shown in Figure 17, of this simplified method differ only slightly from those of 
Figure 16. The cost is hardly higher than that of the ‘uncoupled’ method (13) for much more 
exacting solutions. 

h 
0 
c 

ip 

4 
0 

1 2 3 5 6 

si - -. 1 2 6 

Figure 17. Two-dimensional test problem: I-Akima simplified, 2-FTUS3 simplified 
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5. SOLUTION OF THE NAVIER-STOKES EQUATIONS 

5. I .  Generalization of the Lagrangian approach 

It is not difficult to apply a full Lagrangian approach to the advection-diffusion problem in 
a multi-dimensional space. Consider a fluid in motion and to each fluid particle M ,  assign a 
scalar value F(M,  t) which varies in time according to the law 

Assuming that at time t l .  particle M is located at MI and at  time t2, at M2 and integrating 
equation (15) between times t, and f2 we obtain 

Formulation (16) applies directly to  the discrete problem in which t I  corresponds to time n, 
t2 to time n + 1, M2 is the position of node k in-the spatial mesh system, MI is an M* value 
which does not generally correspond to a node and F(MI, tl) is the interpolated value F*, 
from the neighbouring nodal values, at time n. 

F;+' -F* = f"*'4(M, I )  d t  (17) 

Equation (17) is still exact but the right-hand term requires two simplifications in order to 
obtain a workable scheme. First, the curvilinear integral is replaced by a simple integral 

F ; + l - F * =  [*I d(M,, 1 )  dt  

This simple integral can be estimated in different ways, including the three conventional 
methods viz. 4"St, 4(4"+~"")81, &"+'St. The third method is adopted and equation (15) 
can be written in the discrete form 

5.2. Nauier-Stokes equations 

Newtonian fluids. 
Consider the two, or three, dimensional system for the equations of the laminar motion of 

V V  = 0 --continuity (19) 

and 
D V  1 
-= -- v p  + vv2 v -momentum (20) 
Dr P 

In accordance with subsection 5.1, this system can be written as 

VV"" = 0 

1 ( v y l -  v* ) /S t=  - - v p " + ' + " v ~ v " + '  
P 
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in which the term v* corresponds to K-st (WV); .  Equation (22) already constitutes a 
discrete approximation of (20) but the operators V are not yet discretized. 

Taking the divergence of both sides of (22) and utilizing equation (21) we have 

V2p"+' = pv  v*/sr (23) 
It  should be noted at this juncture that the field V* is not conservative. The question is now 
posed: Under what conditions is system (22); (23) equivalent to system (21), (22)? Assuming 
that p"+' and Vn+l are solutions of (22), (23), taking the divergence of (22), but this time 
incorporating (23) we have 

When imposing the boundary condition VV"+' = 0 at the boundaries of the computation 
field, equation (24) results in the trivial solution (21) only. 

v vn+' = VV2(VV"+') (24) 

5.3. Resolution algorithm 

Assuming that V" and p" are known, V"" and p"+' can be calculated in three steps 

5.3.1. Step 1-Aduection. This step involves two separate problems viz. localization of 
point M* and interpolation of value V*. To resolve the first problem normally requires 
calculation of the equation: 

d M  - = V(M, t) 
dt  

starting from point hfk, and between times t and [--at. However, V"" is not known at this 
stage. Therefore, we assume that V does not vary over this time step and simply solve: 

d M  , 
-= V(M) 
dt  

The components of V" can be expressed in andytical form near point Mk and equation (25) 
can then be solved by a single step of Runge-Kutta's fourth-order algorithm. This method of 
localization will be called 'the method of the curvilinear characteristic'. 

Many Eulerian methods utilize the assumption of the rectilinear characteristic 

d M  
dt 
-=K 

The second problem is interpolation which has already been discussed in detail in section 4. 

5.3.2. Step 2-Pressure solution. This step consists of solving equation (23) with boundary 
conditions usually of the Neumann type. It is therefore prudent to solve the discrete system 
of equations by means of a direct method. 

5.3.3. Diffusion. The pressures being known, the elliptic equations (22) are then solved to 
complete the solution. In this case, the matrices of the systems are strictly diagonally 
dominant and an over-relaxation method is advisable. 

5.4. Boundary conditions 

A tangential condition and a normal condition on each boundary of the computation field 
are required to solve the equation system (19), (20). The three elliptic systems (22), (23), in 
the plane case, require a boundary condition on these boundaries, one of these three 
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conditions must be tangential, the other normal and the third one simply inferred from the 
other two. 

Consider, for instance, a solid horizontal wall, aligned in the x-direction, 

u = 0 is the tangential condition 
u = 0 is the normal condition 

An expression for the normal pressure gradient (ap/dy) is derived from the second momen- 
tum equation (22), or, in steady state 

apiay = PV a2viay2 

5.5. Advantages in rhe Lagrangian formulation 

We have seen that V* is the discretization of term ~ - ( V . G V ) ~ S t .  The term VV* of 
Poisson’s equation (23) therefore contains implicitly the stabilizing term V V; which is found 
in all the methods using primitive variables V, p. Consequently, for an ‘uncoupled’ discretiza- 
tion of the advective terms, subsection 4.2, and incorporating the assumption of rectilinear 
characteristics, subsection 5.3.1, the formulation in V* only is a convenient way of writing 
the right-hand side of Poisson’s equation (23). However, when associated with the multi- 
dimensional interpolation and to the method of the curvilinear characteristic, it effectively 
improves the accuracy of the advective scheme. 

6. COMPUTATION OF A STEADY-STATE TWO-DIMENSIONAL FLOW 

It is of course of interest to  illustrate the algorithm described under section 5 by example. 
However, the prime current intention is to  stress the importance of the selected advective 
scheme in a practical computation of Newtonian viscous flow. This matter is of importance 
since, at the present time, many existing programs incorporate upwind differencing schemes 
which lead, particularly in transient flow conditions, to unacceptable numerical diffusion. 
This may contribute to the fact that fast transient flows of viscous fluids are not studied too 
often. However, in steady state, if the streamlines are parallel to  the mesh lines, there is no 
diffusion when the FTUS1 scheme is used. Unfortunately, the streamlines cannot always be 
parallel to the mesh lines and in such a case, the numerical diffusion of FTUSl may be 
significant, even under steady state conditions. 

6.1. Definirion of computation 

The particular example studied is the flow behind a sudden enlargement, in the computation 
field shown in Figure 18. Distances are  normalized with respect to the height, L, of the step. 
The grid has a 10x20 constant-size mesh with Sx = I ,  Sy =0.2. The velocity profile at the 
inlet is constant u = V,, u = 0. Several computations are conducted corresponding to increas- 
ing values of Reynolds’ number R e =  VoUu. For each value of Re, the streamlines are 
compared for the solutions obtained using the FTUSl scheme and the simplified FTUS3 
scheme of subsection 4.4. 

6.2. Results 

Three computation series were conducted, for Re = 1000, 10,000 and lo6 which relates to 
turbulent flow. These computations for laminar flow although unrealistic serve to demon- 
strate the trend with increasing Reynolds number. 
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Yt a u / 3 y = o  , p.0 

" = O  I 

I O L  2 OL 

Figure 18. Flow down a step: geometry and boundary conditions 

The six solutions are shown in Figures 19-24 in the form of iso-values of stream functions. 
The dimensionless length of main flow re-attachment is presented in Table I: 

Table I. Re-attachment length values 

Scheme -y 1 1000 10,000 1,000,000 

6 - 5  6.7 
m s 3  12 

It can be noted that the difference between the two solutions is more apparent as the 
Reynolds' number increases. Furthermore, it should be noted that the solution obtained with 
the FTUS1 scheme results in small variations for a Reynolds' number equal to, or higher 
than, 1000, illustrating that numerical diffusion is prevailing over the molecular diffusion. 

I 

X 

Figure 19. Flow down a step: FRJS1 scheme, Re = 100 
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Figure 20. How down a step: FlWS3 scheme, Re = 100 
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Figure 21. Flow down a step: FTLJSI scheme, Re = 10,000 
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Figure 22. Flow down a step: ITUS3 scheme, Re= 10,000 
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Figure 23. Flow down a step: FWS1 scheme, Re = 1,000,~o 

6.3. Discussion 

Turbulent flows over a step were studied experimentally, in particular by Honji," for 
Re=300, and by Abbott and Kliney for Re=2x104.  These two studies show that the 
dimensionless length of re-attachment is of the order of six and that it does not vary 
appreciably with the Reynolds' number. In the present study this occurs in laminar flow as 
evaluated by the FWS1 scheme. This proves that the overall diffusion of the numerical 
scheme is of the same order of magnitude as the apparent diffusion of a turbulent source. 
However, it is quite evident that a phenomenon of strict numerical origin, which only 
depends on the advective scheme and mesh size, can at no time model a physical phenome- 
non such as turbulence. O n  the contrary, the flows obtained with the FTUS3 scheme show a 
significant variation in terms of Reynolds' number which is in fact the main characteristic of a 

X 

Figure 24. Flow down a step: FIzTS3 scheme, Re = 1,000,000 
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laminar flow. Moreover, an instability area, just downstream of the step (Figure 22) ,  is 
obtained for a high Reynolds’ number. Now, three-dimensional flows are experimentally 
observed at the same place. This may confirm that there is no stable two-dimensional 
solution in this area. 

The higher values of the dimensionless length of re-attachment point observed with the 
FTUS3 scheme indicate a reduced numerical diffusion, which is smaller than the turbulent 
diffusion since the latter converges on a value of six. A fair description of the actual 
phenomena should be obtained when associating a convenient model of turbulence to the 
computation technique advocated. 

7. CONCLUSION 

The FTUSl scheme obviously induces an unacceptable numerical diffusion in transient flow 
conditions. It is therefore essential to develop a less diffusive scheme associated with 
reasonable cost. Considering the advection problem from a Lagrangian approach, some 
schemes are proposed which give very good results-as shown by the one-dimensional test 
case. Amongst them, the FTUS3 scheme (upwind differencing interpolation, third-degree 
polynomial) appears to be particularly interesting because of its linearity and relative 
programming simplicity. 

By further investigations, a method of characteristics is proposed for solving the Navier- 
Stokes equations in primitive variables V,p. This method is of easy coding, due to the 
Lagrangian formalism in V*. It has a higher accuracy when compared to the usually 
advocated methods, due to the two-dimensional interpolation and computation of the 
curvilinear characteristic. 

In steady state, the distortions induced by the numerical diffusion are more difficult to 
evaluate. In actual fact, they occur in laminar solutions only with high Reynolds’ number, i.e. 
when the actual physical flow is turbulent, thus preventing any direct comparison with the 
experimental data. However, a model test of flow behind sudden enlargement clearly shows 
that in some cases the numerical diffusion induced by the FTUSl scheme has the same order 
of magnitude as the effective turbulent diffusion and it therefore appears unnecessary to 
associate to this scheme a sophisticated simulation of turbulence. On the contrary, the 
numerical diffusion of the FTUS3 scheme remains significantly smaller, thus giving full 
interest to the modelling of turbulence. 

This is why the FTUS3 scheme appears to us quite suitable for the computation of steady 
and transient turbulent flows in industrial applications. 
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